

a likidia ja kana ana La

Volume 17 STUDY G-1

STATE OF ALASKA

Jay S. Hammond, Governor

Annual Performance Report for

INVENTORY AND CATALOGING

by

F.D. Van Hulle, J. D. Murray, S.L. Hammarstrom, D.A. Watsjold, L.A. Gwartney, F.T. Williams, S.W. Kubik, and J.C. Riis

ALASKA DEPARTMENT OF FISH AND GAME James W. Brooks, Commissioner

SPORT FISH DIVISION

Rupert E. Andrews, Director

W. Michael Kaill, Chief, Sport Fish Research

TABLE OF CONTENTS

JOB NO. G-I-B		Page
Abstract		1
Background		2
Recommendations		3
Objectives		3
Techniques Used		4
Findings		4
Results		4
Lake and Stream Surveys		4
Assessment and Inventory o	f Anadromous Fish	
Populations		20
Gill Net Catch Analysis		27
Enhancement and Developmen		27
Public Access to Sport Fish	hing Waters	27
Discussion		27
Lake and Stream Surveys		27
Gillnet Catch Analysis		33
Enhancement and Developmen Literature Cited	t of Anadromous Fish	33 34
JOB NO. G-I-C		
Abstract		35
Background		35
Lake Management		35
Kenai River Creel Census		36
Swanson River Egg Take		36
Recommendations		38
Objectives		39
Techniques Used		39
Lake Surveys		39
Stocked Lake Evaluation		39
Kenai River Creel Census		39
Swanson River Egg Take		41
Findings		41
Results		41
Lake Surveys		41
Stocked Lake Evaluation		42
Kenai River Creel Census		50
Discussion		58
Swanson River Egg Take		60
Literature Cited		62

RESEARCH PROJECT SEGMENT

State:

ALASKA

Name:

Sport Fish Investigations

of Alaska.

Project No.:

F-9-8

Study No.:

G-I

Study Title:

INVENTORY AND CATALOGING

Job No.:

G-I-B

Job Title:

<u>Inventory and Cataloging</u> of the Sport Fish and Sport

Fish Waters in Southwestern

Alaska.

Period Covered: July 1, 1975 to June 30, 1976.

ABSTRACT

Volumetric surveys of Pony and Tanignak lakes indicated surface areas of 14.4 and 29.5 acres, and volumes of 92 and 311 acre feet, respectively. Excellent growth and survival of rainbow trout, Salmo gairdneri (Richardson) was noted in Tanignak Lake, while Pony Lake exhibited poor coho salmon, Oncorhynchus kisutch, (Walbaum) growth and survival.

Foot surveys of 25 streams located on Shuyak Island indicated that five streams contained anadromous fish and should be included in the anadromous fish stream catalog.

Waters within or near logging operations on Afognak Island were surveyed and recommendations were made to protect existing fish populations.

Twenty-seven managed lakes in the Kodiak area were sampled with variable mesh gill nets to assess survival and growth trends of rainbow trout, coho salmon, Arctic grayling, Thymallus arcticus, (Pallas) and Dolly Varden, Salvelinus malma (Walbaum).

Rainbow trout from Ennis, Montana (150/1b.) and Winthrop, Washington (1,449/1b.) stocked June 20, 1974 in Margaret Lake (rehabilitated October, 1972) averaged 152 and 148 mm, respectively, after 14 months of residency. The catch per net hour was 2.9 times greater for the Winthrop trout,

suggesting no appreciable advantage in stocking rehabilitated waters with large fry. Similar growth was observed for Winthrop trout concurrently stocked in Lake Genevieve (rehabilitated October, 1972). Pony, Caroline, and Mayflower lakes were found to be extremely poor fish producers as few fish were captured per net hour of sampling.

Salmon escapement counts indicated approximately 193,320 pink salmon, 0. gorbuscha (Walbaum), 12,150 chum salmon, 0. keta (Walbaum), 4,207 sockeye salmon, 0. nerka (Walbaum), and 5,820 cohos spawned in 20 northeast Kodiak Island streams.

Karluk and Ayakulik rivers had escapements of 1,050 and 2,000 chinook salmon, 0. tshawytscha (Walbaum), respectively.

Data on rainbow trout (n=242) captured by a five panel variable mesh gill net, indicated age 0, III and IV+ trout were captured by 1/2, 1 1/2, and 2-inch mesh panels, respectively. Age I and II fish were captured by both the 3/4 and 1-inch mesh panels.

Gabion structures were installed in both Island Lake Creek and a tributary of Lake Rose Tead to enhance anadromous fish populations.

An experimental coho plant (3,700 at 518/1b.) in Mission Lake, June 27, 1973, produced an active sport fishery and a minimum of 35 adult spawners during September-October, 1975.

Monthly water analysis conducted on seven Kodiak Island lakes indicated all waters were low in productivity; however, sufficient dissolved oxygen was present to sustain fish life throughout the year.

BACKGROUND

The primary objective of Sport Fish Division projects in the Kodiak area is to optimize the survival and growth of resident and stocked game fish and to maintain the natural runs of anadromous fish.

The Kodiak management area is composed of the Kodiak-Afognak Island group and the Alaska Peninsula, south of a line from Cape Douglas to Port Heiden, including the Aleutian Islands. The Kodiak Island complex is approximately 125 miles long by 75 miles wide and the Alaska Peninsula section is 1,000 miles long extending 500 miles into the Bering Sea. The area is mountainous, with numerous bays, lakes, and streams, containing anadromous and resident fish. Much of the area has not been surveyed and the total number of fish producing waters is unknown. Kodiak Island has over 1,000 miles of coastline, over 1,000 lakes (10 acres or larger in size), and 227 anadromous fish streams.

The fish stocking program was initiated in 1953 and has continued to the present; however, in order to develop more successful programs, numerous lakes have been chemically rehabilitated and various species of fish have been stocked at differential rates, sizes, and under varied conditions to optimize growth and survival.

The physical and biological condition of lakes on northeast Kodiak Island have been examined in some detail and the results of these observations are shown in the annual Federal Aid in Fish Restoration Report 1953-1975. Priorities for research, stocking, and general survey work have been confined to the areas of intensive sport fishing effort or to areas where specific data is required to evaluate anticipated land use programs or development activities.

Stream research has centered on waters with unique species (such as steel-head, Salmo gairdneri (Richardson), rainbow trout, and chinook salmon) and on 20 major streams on northeast Kodiak Island.

The Federal Aid in Fish Restoration Report for the Kodiak area from 1953 to the present depicts specific data concerning the size, age, and growth of coho, Dolly Varden, chinook, sockeye, and steelhead from the Kodiak area. Additional data concerning harvest rates and spawning escapement are presented.

These data form the foundation for most management decisions concerning sport fish regulations and land use activities. They also determine in part the direction of Kodiak research projects by indicating specific areas for which data are lacking or where more comprehensive data are required.

RECOMMENDATIONS

- 1. Continue creel census on Buskin and Pasagshak rivers as needed.
- 2. Continue the postal survey annually.
- 3. Survey and catalog the fish producing waters on Afognak Island that may be affected by logging.
- 4. Evaluate the survival, growth, and quality of fishing produced by various races and species of stocked fish.
- 5. Determine the optimum coho carrying capacity of major streams on northeastern Kodiak Island.
- 6. Rehabilitate Pony Lake with Pro-Nox-fish at 0.5 ppm, 1976.

OBJECTIVES

- 1. To determine the physical, chemical and biological characteristics of existing and potential sport fishing streams and lakes in the Kodiak area.
- 2. To establish magnitude, distribution, timing, yearly fluctuations and angler harvest of sport fish populations on Kodiak Island, Afognak Island, and areas of concern to sport fisheries management on the Alaska Peninsula.

- 3. To evaluate and develop plans for the enhancement of anadromous and resident fish stocks.
- 4. To assist as required in the investigation of public access status to the area's sport fishing waters and make specific recommendations for public access sites.

TECHNIQUES USED

Standard techniques as described by Murray and Van Hulle (1975) were used in lake surveys, gillnet sampling, age analysis, determination of fish size and escapements, and water chemistry analysis. Water samples were also analyzed by the United States Geological Survey Laboratory in Anchorage, Alaska.

The catch trend of various net panels in a variable mesh gill net was examined by comparing mean length, standard deviation, catch frequencies, and age classes of fishes captured.

A creel census was conducted on Buskin River from April 22-October 19, 1975. Census interviews were conducted during four-hour periods, once each weekend day and twice during weekdays. The sampling design was set up in two-week periods with random four-hour blocks selected without replacement.

Angler interviews were conducted at Commercial Fish Division counting weirs to gain angler harvest information and effort on Karluk River, Akalura Creek, Olga Creek, and Ayakulik River.

The fall postal questionnaire (Figure 1) described by Murray and Van Hulle (1975) was expanded to include halibut, chinook, and steelhead.

In cooperation with Commercial Fish Division, a weir and support facilities were constructed on Karluk River approximately 0.75 miles above the lagoon. A creel census was conducted to gain angler harvest and age and size data from chinook and steelhead.

Gabions were used to construct the fishery enhancement structures on Island Lake Creek and Roadside Creek. The Fisheries Rehabilitation Enhancement and Development Division and the Department of Highways assisted with the former and latter projects, respectively.

Bottom samples from Mayflower Lake were collected with a 9x9" Ekman dredge.

FINDINGS

Results

Lake and Stream Surveys:

Volumetric surveys of Tanignak and Pony lakes (Figure 2) indicate respective surface areas of 29.5 and 14.4 acres, maximum depths of 22 and 11 feet, and

PLEASE	DETACH A	ND MAIL IN	MEDIATELY	Y - PRIOR	TO N	OV. 30	
I -did/did not-	fish for	salmon.	I -did/di	id not- f	ish f	or Dol	ly Varden
I -did/did not-	fish for	halibut.	I -did/di	id not- f	ish f	or ste	elhead.
	No.		Total	No. Fish	Reta	ined	
Area Fished	Times Fished	Pink Dog	g <u>Silver</u>	Dolly Varden	Red	King	Steelhead
American R.							
Buskin R.							
Kalsin R.			····				
Olds R.							
Pasagshak R.	····						
Roslyn Cr.	-						
Saltery Cr.							
Salonie Cr.			ning emillioninas.				
Other:							
Stream							
Stream	-						
Stream						-	-
Saltwater Beach	woods amongous.			April 10 Apr			***************************************
Number of times	fished f	for halibu	t	Number of	f hali	but re	etained
Any comments or Fishery would b				_			Sport

Figure 1. Fall Postal Questionnaire, 1975.

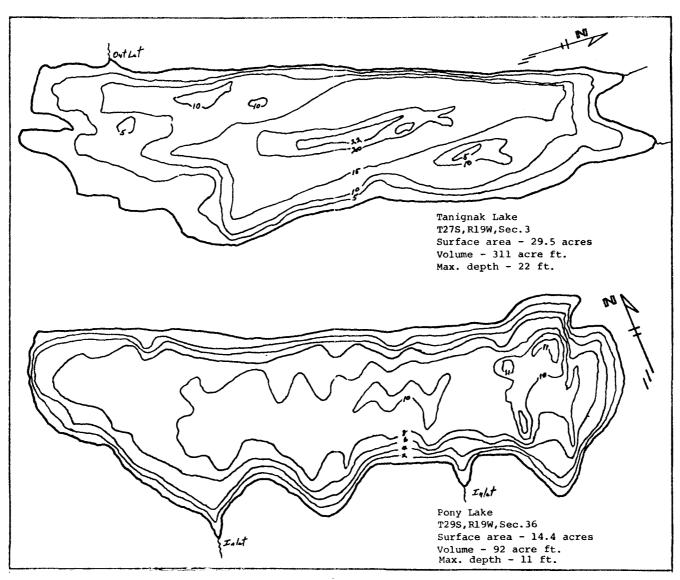


Figure 2. Volumetric Maps of Tanignak Lake and Pony Lake.

volumes of 311 and 92 acre feet. These lakes contain threespine stickle-back, <u>Gasterosteus</u> aculeatus (Linnaeus) and are being considered for chemical rehabilitation.

Investigation of 30 unsurveyed streams on Shuyak Island (Figure 3) indicated streams 5, 11, 16, 17, and 18 contained anadromous fish. The remaining waters were either intermittent or contained too steep a gradient for fish production. (A complete report of the Shuyak survey is on file in the Kodiak office.)

The 10 timber cut units (total = 1,099 acres) on Afognak Island (Figure 4) were found to contain 16 fish producing streams (total stream length of 17.5 miles) and 10 major streams crossed by logging related activities which required culvert or bridge installations.

Relative growth and survival rates of stocked and/or wild fish in 27 Kodiak lakes as determined by test netting is presented in Table 1.

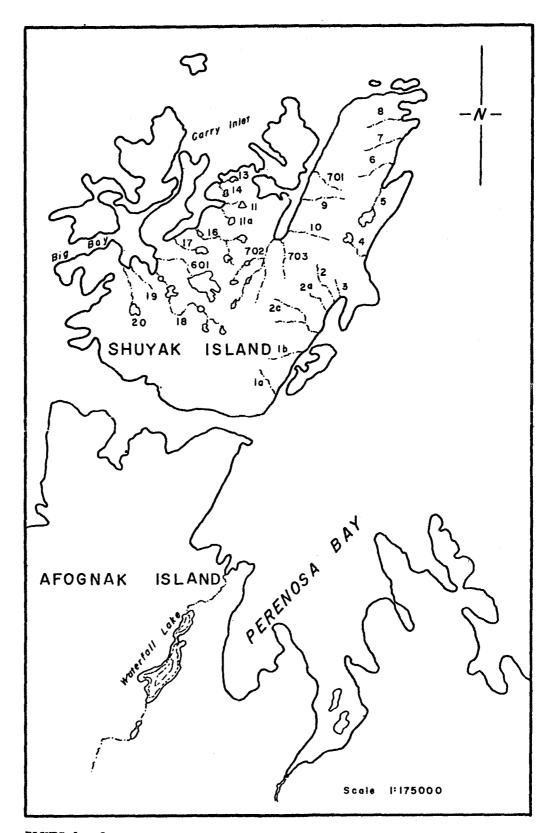


FIGURE 3. Streams Surveyed on Shuyak Island.

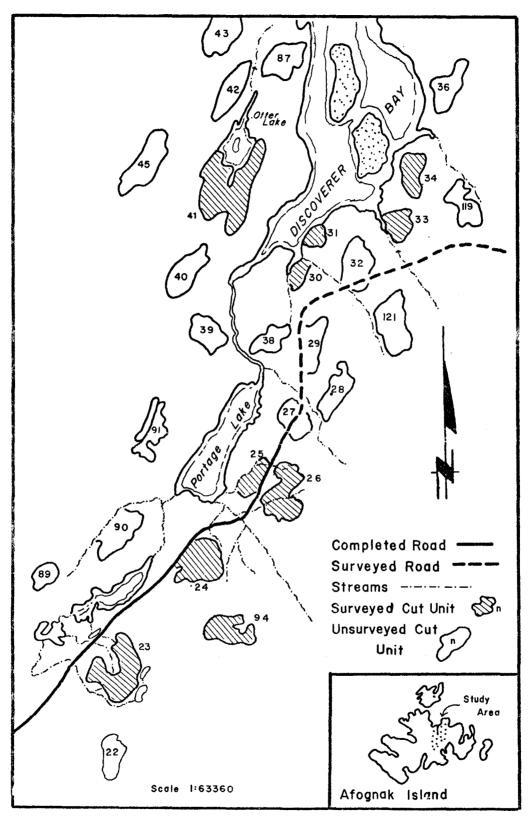


FIGURE 4. Location of Clear Cut Logging Units on Afognak Island.

Table 1. Population Characteristics of Kodiak Lakes as Defined by Variable-Mesh Gill Nets, 1975.

Lake Name		Samp1	ing Dat	ta							History		
&	Date			Age	Length		Weight		Catch/	Date **	Total	Per	Per
Location	Sampled	Species	Number	Class	Range	Mean	Range	Mean	Net Hr.	Stocked	Number	<u>lb.</u>	Acre
Abercrombie 127S, R19W	9/17	GR	38	11	168-245	197	56-150	92	2.62	6/16/73	55,000	Fry	2,941
Sec. 15		RT	7	I	172-208	190	60-116	89	0.48	6/20/74	3,700	1,449	198
		RT	2	11	222-245	234	158-190	174	0.14	7/9/73	3,625	261	194
Aurel	8/16	GR	5	III	267-285	275	210-267	232	0.04	NR or mig	rants from	Cicely Lak	e
7285, R21W Sec. 36	& 8/22	GR	5	IV	319-360	341	396-498	452	0.04	NR .			
		RT	2	0	91-107	99	21-28	24	0.01	7/8/75	1,500	267	100
		RT	3	I	178-218	198	82-99	90	0.02	6/20/74	3,000	1,449	200
		RT	1	III	325		419		0.01	NR			
		RT	2	IV	417-421	419	653-940	797	0.01	7/27/71	3,000	306	200
Barry Lagoon	9/3	SS	7	I	164-189	176	46-63	53	0.16	6/20/74	20,000	1,145	84
731S, R19W Sec. 28		ss	4	II	227-300	262	119-352	229	0.09	6/22/73	39,720	518	167
		SS	4	111	356-400	384	624-1078	823	0.09	NR			
		DV	28	11	170-214	193	46-76	65	0.64	NR			
		DV	5	III	221-262	241	104-156	123	0.12	NR			
		DV	4	IV	283-310	297 '	190-368	270	0.09	NR			
		CT	1	***	286				0.03	Ocean Mig	rant		

Table 1. contd. Population Characteristics of Kodiak Lakes as Defined by Variable-Mesh Gill Nets, 1975.

Lake Name		Samp	ling Dat	ta							History		
&	Date			Age	Length		Weight		Catch/	Date **	Total	Per	Per
Location	Sampled_	Species	Number	Class	Range	Mean	kange	Mean	Net Hr.	Stocked	Number	1b.	Acre
Bull T31S, R20W	9/3	RT	9	0	96-123	108			0.20	7/8/75	1,500	1,807	151
Sec. 35		RT (W)	19	I	172-286	230	72-303	166	0.42	6/20/74	3,000	1,449	30:
Caroline T28S, R21W Sec. 26	8/16		0			70.25	Net hours		0.00				
Cascade	7/30	GR	19	1	114-165	133	14-43	24	0.21	NR, 1974			
T275, R21W Sec. 12		GR	9	11	211-257	236	93–175	161	0.10	NR, 1973			
		GR	3	111	283-296	288	256-285	268	0.03	NR, 1972			
		RT	7	I	80-98	92	7-11	10	0.08	NR, 1974			
		RT	3	11	194-255	223	91-210	146	0.03	NR, 1973			
		RT	3	111	310-340	321	345-465	386	0.03	NR, 1972			
		RT	2	v	383-404	393	647 –770	708	0.02	NR, 1970			
Chiniak Lagoon	9/10	DV	1	II	197		79		0.02	NR, 1973			
T29S, R19W Sec. 34		DA	13	111	205-285	242	102-275	167	0.27	NR, 1972			
		DV	8	IV	310-355	331	296-568	421	0.16	NR, 1971			
		DV	4	V	339-384	362	452-544	505	0.08	NR, 1970			

Table 1. contd. Population Characteristics of Kodiak Lakes as Defined by Variable-Mesh Gill Nets, 1975.

Lake Nam e		Samp	ling Da								History		
&	Date	*		Age	Length		Weight		Catch/	Date **	Total	Per	Per
Location	Sampled	Species	Number	Class	Range	Mean	Range	Mean	Net Hr.	Stocked	Number	1b.	Acre
Cicely 1285, R21W	8/22	RT	1	I	155		76		0.62	NR or Mig	rants from	Aurel	
Sec. 36		RT	1	II	275		280		0.02		1f 11	u	
		GR	3	III	271-325	302	219-440	342	0.04	7/3/72	10,000	Fry	1,786
Oolgoi	8/28	DV	2	I	110-115	112	17-17	17	0.02	NR, 1974			
1285, R19W Sec. 12		DV	1	11	259		200		0.01	NR, 1973			
		DV	4	111	373-380	378	539-568	561	0.04	NR, 1972			
		RT	4	III	340-422	388	524-1702	926	0.04	NR, 1972			
ragonfly	8/7	DV	1	II	190		78		0.01	NR, 1973			
28S, R24W Sec. 34		RT	16	1	135-190	168	46-96	72	0.18	6/24/74	1,600	150	210
		RT	15	II	200-286	224	94-290	151	0.16	6/21/73	1,600	155	210
enevieve	8/1	DA	5	11	150-162	156	40-48	45	0.06	NR, 1973			
28S, R20W Sec. 10		RS	2	11	147-150	148	34-44	39	0.02	NR, 1973			
		RT (W)	31	I	126-170	148	27-65	43	0.35	6/20/74	9,500	1,449	202
		RT (W)	4	II	190-233	213	86-155	130	0.04	6/20/73	10,200	266	21

Table 1. contd. Population Characteristics of Kodiak Lakes as Defined by Variable-Mesh Gill Nets, 1975.

ake Name		Samp	ling Da						***		History		
6	Date	*	Marine	Age	Length		Weight		Catch/	Date **	Total	Per	Per
ocation	Sampled	Species	Number	CLASS	Range	Mean	Range	Mean	Net Hr.	Stocked	Number	1b.	Acre
eitman 29S, R2OW	9/7	RT	6	I	154-212	187	41127	67	0.15	NR, 1974			
Sec. 05		"RT	1	II	182		72		0.02	NR, 1973			
orseshoe 285, R20W	9/9	RT	7	o	90-112	100	10-17	13	0.26	7/18/75	1,600	267	333
Sec. 35		RT	17	I	139-198	180	40~108	80	0.64	6/21/74	1,600	1,449	333
ck	8/5	RT	3	I	190-21 3	205	96-136	120	0.15	6/20/74	900	1,499	191
18S, R21W Sec. 36		RT	3	11	235-302	274	144-369	282	0.15	6/21/73	900	155	191
		RT	2	111	312-315	314	398 -438	418	0.10	8/11/72	900	556	191
piter	9/18	RT	7	I	187-255	222	90~225	151	0.14	6/21/74	3,600	1,449	200
OS, R21W ec. 18		RT	2	II	216-335	276	126495	310	0.04	6/21/73	3,600	155	206
		RT	6	III	313-394	338	388-775	488	0.12	8/11/72	3,600	556	206
e	8/7	DΫ	1	II	235		145		0.02	NR, 1973			
28S, R21W Sec. 36		DV	1	111	233		150		0.02	MR, 1972			
		RT	1	I	110		134		0.02	6/24/74	2,800	1,449	196
		RT	3	11	228-281	257	142 - 294	240	0.04	7/9/7 3	2,800	155	196
		RT	4	111	344-369	361	545-812	636	0.06	8/11/72	2,800	556	196

Table 1. contd. Population Characteristics of Kodiak Lakes as Defined by Variable-Mesh Gill Nets, 1975.

ake Name		Samp1	ing Dat								History		
	Date	*		Age	Length		Weight		Catch/	Date **	Total	Per	Per
ocation	Sampled	Species	Number	Class	Range	Mean	Range	Mean	Net Hr.	Stocked	Number	1b.	Acre
111y Pond 1285, R20W Sec. 27	7/31	RT	16	I	170-215	184	84-118	92	0.82	6/20/74	2,000		254
⊿ong	8/26	DA	2	I	118-122	120	19-21	20	0.09	NR, 1974			
127S, R19W Sec. 34		GR	11	I	157-187	174	50-69	60	0.48	7/20/74	1,258	83	35
		RT	15	I	167-241	200	61-180	106	0.65	6/24/74	5,400	1,449	150
upine	9/3	RT (E)	5	0	100-115	106	•		0.22	7/18/75	7 50	267	100
721S, R20W Sec. 35		RT (E)	14	I	177-321	271	66-452	283	0.60	6/20/74	1,500	150	200
largaret	8/1	RT (W)	41	I	130-172	148	29-67	43	0.59	6/21/74	800	150	101
28S, R2OW Sec. 11	& 8/5	RT (E)	14	I	140-169	152	35-57	44	0.20	6/21/74	800	1,449	101
		RT (E)	5	II	174-241	210	73-192	122	0.07	6/21/73	800	155	101
layflower	9/9	DV	7	***	89-403	282	10-610	241	0.18	NR			
29S, R2OW Sec. 23		SS	11	I	95-164	107	10-55	22	0.29	6/20/74	1,500	1,145	121

Table 1. contd. Population Characteristics of Kodiak Lakes as Defined by Variable-Mesh Gill Nets, 1975.

ke Name		Sar	apling D	ata							History		
& .	Date	*		Age	Length		Weight		Catch/	Date **	Total	Per	Per
cation	Sampled	Species	Number	Class	Range	Mean	Range	Mean	Net Hr.	Stocked	Number	1b.	Acre
bin 885, R20W	8/1	DV	1	I	140		31		0.05	NR, 1974			
ec. 31		DV	2	11	187-232	209	72-138	105	0.10	NR, 1973			
		RT	1	I	251		202		0.05	Migrant f	rom Beaver	Pond	
		RT	2	III	330-365	347	402-512	457	0.10	н	., .,	**	
		SS	3	I	175-187	180	62-80	70	0.15	NR, 1974			
ny	9/10	ss	6	1	105-200	161	12-110	57	0.07	6/20/74	3,000	1,145	210
9S, R19W ec. 36		SS	4	11	141-182	162	34-78	56	0.05	6/23/73	2,800	518	194
turn OS, R18W ec. 18	9/18	RT	4	111	368-425	402	334-1020	717	0.08	8/11/72	2,400	556	205
ag	8/7	RT	19	ı	130-238	184	60-174	130	0.28	6/24/74	1,610	150	322
8S, R2OW ec. 35		RT	3	11	185-210	201	96-144	124	0.04	6/21/73	1,500	155	300
ıthern	8/26	SS	49	I	138-196	162	38 -79	51	1.17	6/20/74	3,300	1,145	189
S, R19W		ss	14	II	163-221	192	55-125	84	0.33	6/26/73	3,000	966	172

Table 1. contd. Population Characteristics of Kodiak Lakes as Defined by Variable-Mesh Gill Nets, 1975.

Lake Name		Samp1	ing Dat	a							History		
& <u>Location</u>	Date Sampled	* Species	Number	Age Class	Length Range	(mm) Mean	<u>Weight</u> Range	(gr) Mean	Catch/ Net Hr.	Date ** Stocked	Total Number	Per 1b.	Per Acre
Tanignak	8/28	DΫ	1	11	290		226		0.01	NR, 1973			
T27S, R19W Sec. 3		RT	12	I	141-255	216	38-240	135	0.08	6/20/74	6,500	1,449	218
		RT	27	II	282-343	315	262-466	369	0.19	6/25/73	6,500	155	218
		RT	10	III	318-367	339	390-596	459	0.07	8/11/72	6,500	556	218

* E = Ennis, Montana strain

** NR = Natural Reproduction

W = Winthrop, Washington strain

*** Fish were not aged

DV = Dolly Varden

GR = Grayling

RT = Rainbow Trout

SS = Coho Salmon

RS = Sockeye Salmon

CT = Cottid

Mayflower Lake was inundated by sea water during the 1964 Tsunami (Lall, Marriot, Spetz, and Simons, 1965) and currently remains saline below middepth. Salinity readings at 15 and 28 feet on July 10, 1975 were 10 ppt and 16.5 ppt, respectively, identical to those recorded December 12, 1970 (Van Hulle, 1971). Analysis of bottom samples, collected with an Ekman Dredge July 10, 1975, indicated freshwater plant and animal life did not exist in the saltwater strata. Samples collected from depths of 27 and 28 feet contained strong hydrogen sulfide gas odors, characteristic stagnant, mineral water (Table 2).

Table 2. Bottom Sample Analysis from Mayflower Lake, July 10, 1975.

Depth (ft.)	Salinity*	Bottom Type	Aquatic Organisms
3	0	Volcanic ash and fribrous detritus	none
6	0	Volcanic ash and fribrous detritus	diptera larva
9	0	Volcanic ash with pulpy and fribrous detritus	annelids, snails, diptera larva
12	0	Volcanic ash and pulpy detritus	diptera larva
15,18,21,24	10-16	Volcanic ash and pulpy detritus	none
27	16.5	Volcanic ash and pulpy detritus (hydrogen sulfide gas odor)	none
28	16.5	Volcanic ash and pulpy detritus (hydrogen sulfide gas odor)	none

^{*} parts per thousand

Water chemistry data of seven Kodiak Island managed lakes sampled midmonthly is presented in Table 3. Total alkalinity and total hardness as CaCO₃ and dissolved oxygen ranges were 4-38 ppm, 2-44 ppm, and 7-14 ppm, respectively. The first ice cover did not occur until mid-November and all

Table 3. Water Characteristics of Seven Kodiak Lakes Sampled Monthly, July 15, 1974-June 15, 1975.

	Total (ppm)	Alk.*	Total (ppm)	Hard.*	рH	1	Dissolve (ppm.)	ed Oxygen	Temp.	°C	Freeze	Ice Co	ver(In.)	Break S	now Co	ver(In)
Lake	X	Range	<u>x</u>	Range	<u>x</u>	Range	X	Range	x	Range	Up	<u>x</u>	Range	Up	×	Range
Abercrombie	27.9	24-30	34.7	30-44	7.4	6.7-8.2	11.3	8.6-13.5	7.6	1.5-18.5	Mid-Nov.	13.2	1-24	Early May	3.5	1-4
Lupine	23.8	10-38	16.0	6-24	7.2	6.7-8.2	9.7	7-11.5	8.8	1.0-19.0	.11d-Nov.	12.0	1-20	Early May	4.2	4-6
Margaret	19.3	12-26	17.8	10-24	7.1	6.6-7.9	10.8	8.5-12.5	7.2	1.0-20.0	Mid-Nov.	13.2	1-20	Mid-May	6.3	2-14
Bull	16.8	10-24	11.4	9-18	7.1	6.6-7.7	10.8	7.5-13.0	8.0	1.0-19.0	Mid-Nov.	12.1	1-20	Early May	6.8	4-10
Genevieve	13.8	6-20	11.6	6-18	7.0	6.5-7.7	11.8	9.0-14.0	7.4	1.0-19.0	Mid-Nov.	15.6	1-32	Mid-May	6.6	2-15
Lee	12.0	4-16	7.3	2-10	6.9	6.3-7.8	11.6	9.0-13.5	7.1	1.5-21.0	Mid-Nov.	18.5	1-41	Late May	9.4	2-21
Dragonfly	11.7	8-18	7.8	4-10	6.8	6.3-7.4	10.6	7.5-12.0	7.2	1.0-21.0	Mid-Nov.	. 15.4	1-32	Late May	4.0	1-6
*CaC03																

of the lakes were ice free by late May. The mean snow and ice cover range was 4.2-9.4 inches and 12.0-18.5 inches, respectively.

Water chemistry analysis of six Kodiak Island managed lakes as determined by the U.S.G.S. Laboratory in Anchorage, Alaska and a DR-EL Hach field kit in Kodiak, Alaska are compared in Table 4. Total alkalinity and total hardness as calcium carbonate (CaCO₃) for any of the waters tested by either method never exceeded 36 ppm. The Hach kit gave slightly higher alkalinity readings (3-16 ppm) and similar to slightly lower (15 ppm) hardness readings.

Table 4. Analysis of Water Samples Collected From Six Kodiak Lakes and Analyzed by U.S.G.S. in Anchorage, Alaska, and the Alaska Department of Fish and Game, with a DR-EL Hach Kit, May 29, 1975.

Lake Name	Total Alkalinity (ppm/CaCO ₃)	Total Hardness (ppm/CaCO ₃)	pH*
Abercrombie			- ^
USGS	27	36	7.0
Hach	36	30	8.0
Bull			
USGS	7	11	6.7
Hach	16	8	7.2
Dragonfly			
USGS	9	7	6.7
Hach	14	8	7.3
Genevieve			
USGS	17	27	6.8
Hach	20	12	7.0
Lee			
USGS	11	7	6.7
Hach	16	. 6	6.9
Margaret			
USGS	10	16	6.7
Hach	26	12	7.4

^{*}U.S.G.S. did not consider their pH tests to be accurate due to the time lag between sample collection and analysis.

Assessment and Inventory of Anadromous Fish Populations:

Harvest estimates from Buskin River creel census (April 22-October 19) and a Kodiak area postal survey are currently under statistical analysis and not available for reporting. However, inspection of raw census data indicates the Dolly Varden fishery extended from May 4-June 1. A sample of 671 angler caught Dolly Varden averaged 307 mm in length with a range of 193-520 mm. The mean length of fish sampled became progressively smaller as the outmigration continued (Figure 5).

Age and growth data of 128 angler caught Buskin River coho (Table 5) indicate age classes 2.1, 1.1, and 3.1 respectively, comprised 87.7%, 9.0%, and 3.3% of the sample. Age 2.1 males (n=41) averaged 702 mm and 11.5 lb. and 2.1 females (n=43) averaged 679 mm and 10.0 lb.

A survey of Lake Rose Tead indicated the best spawning areas are the inlet streams, a lake-side gravel pit, and the southeast shore. The outlet (Pasagshak River) is composed of sand and silt and not suitable for spawning. Table 6 presents harvest and escapement estimates of Lake Rose Tead coho from 1965-1975.

A minimum of 4,207 sockeye salmon, 0. nerka (Walbaum), 193,320 pink salmon, 0. gorbuscha (Walbaum), 12,150 chum salmon, 0. keta (Walbaum), and 5,820 coho spawned in 20 northeastern Kodiak Island streams during 1975 (Table 7).

Pink salmon numbers were low in Marshy, Chiniak, and Salt creeks, while chum escapements were low in the American and Olds rivers. Monashka, Pillar and Salt creeks, had low coho escapements.

Sport harvest and effort in the vicinity of Commercial Fish Division weirs at Karluk Lake and Lagoon, Ayakulik River, Akalura Creek, and Olga Creek, are presented in Table 8. Most fishing pressure occurred on Karluk River where a minimum of 310 anglers fished 881 days. Angler effort on Akalura, Ayakulik and Olga creeks was 31, 94, and 8 angler days, respectively. Fishing in the above waters was excellent with large numbers of fish released in relation to the total harvest (Table 8).

Scale samples were collected from 29 Karluk River steelhead during June, 1975; however, only 16 fish had readable scales. Age analysis of the small sample indicated six age classes were represented in four brood years (1966, 1968, 1969, and 1970) with 1969 and 1970 parent stock producing 43.5% and 37.23%, respectively, of the sample.

Chinook salmon, 0. tshawytscha (Walbaum), (n=92) sampled at Karluk Lagoon were composed of six age classes with parent years 1969, 1970, and 1971 producing 88.1% of the sample (Table 9). Age 1.4 females averaged 883 mm (n=13) in length, 20 mm longer than 1.4 males (n=10).

A total of 1,564 chinook salmon were enumerated in Karluk River on an August 20-21 float survey. Since the river's breadth (200-400 feet) prevents total fish enumeration, it is estimated a minimum of 2,000 chinook spawned in Karluk River during 1975.

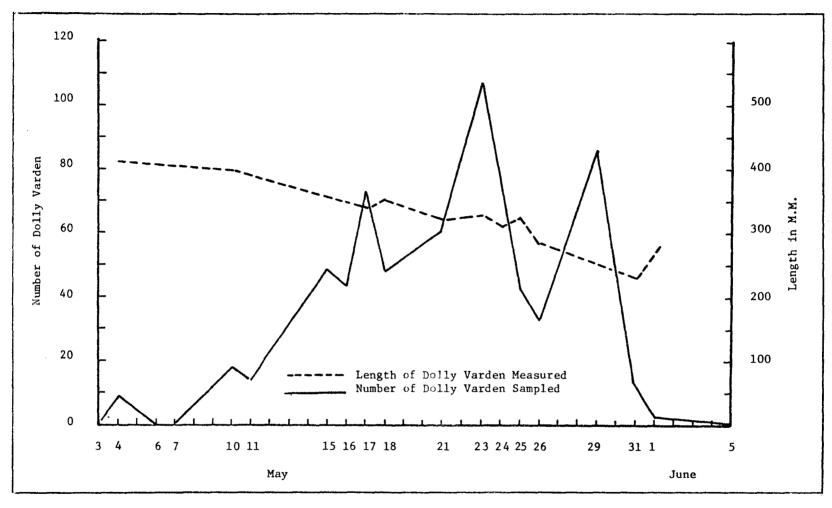


FIGURE 5. Number and Mean Length of Buskin River Dolly Varden Sampled from Angler Creels, May, 1975.

Table 5. Size and Age Composition of Buskin River Coho Salmon, 1975.

		n	Brood			_		<i>.</i>	n *	
Males	Age	Aged	Year	Ln Rg	<u>e</u>	x Ln	Wt Rge	х Ŵt	Sampled	
Round	2.0	12	1972	335-3	197	332	1.2-2.0	1.9	12	16.9
	1.1	4	1972	596-7	12	679	5.8-9.8	7.8	4	5.6
	2.1	41	1971	560-8	306	702	7.2-15.0	11.5	41	57.8
	3.1	1	1970	800)				1	1.4
Dressed	1.1	1	1972	736	5		13.2		3	4.2
	2.1		1971	687-7	60	727	7.8-13.0	9.8	10	14.1
Total**		66		560-8	306	706	5.8-15.0	10.4	71	100.0
Females										
Round	1.1	1	1972	740	mm (11.8		1	1.6
	2.1	43	1971	525-7	80	679	3.8-15.0	10.0	43	68.2
	3.1	3	1970	680-7	07	696			3	4.8
Dressed	1.1	3	1972	Incom	plete	Data			3	4.8
	2.1	12	1971	670-7	50	704	7.0-8.8	7.8	<u>13</u>	20.6
Total***		62		525-7	780	686	3.8-0.5.0	10.0	63	100.0
			Age C1	ass Comp	ositio	on Excludi	ing Jacks			
			Age	1.1	2.1	3.1	Total			
			No.	11	107	4	122			
			<u>%</u>	9.0	87.7	3.3	100.0			
		Broo	d Year	1972	1971	1970				

^{*} Difference between "sampled" and "aged" are incomplete size data ** Excludes size data for age 2.0 and weight data for dressed fish

^{***} Excludes weight data for dressed fish

Table 6. Harvest and Escapement Estimates of Lake Rose Tead Coho Salmon, 1965-1975.

Year	Escapement	Sport Harvest	Total Run
1965	250	*	*
1966	1,600	200	1,800
1967	2,600	200	2,800
1968	3,500	300	3,800
1969	2,000	750	2,750
1970	1,000	1,000	2,000
1971	1,050	1,350	2,400
1972	2,800	1,400	4,200
1973	2,350	1,129	3,479
1974	*	609	*
1975	3,500	**	**

^{*} No estimate.

^{**} Estimate pending analysis of postal survey data.

Table 7. Salmon Escapement Estimates, N.E. Kodiak Island, 1975.

System	Sockeye	e Salmon	Pink	Salmon		Salmon	Coho Salmon		
	Date	Escpmt.	Date	Escpmt.	Date	Escpmt.	Date	Escpmt.	
American			9-2	28,000***	9-2	700***	10-24	350*	
Buskin	8-27	3,207*/**	9-4	22,000***		NA	10-27	ئر *500	
Chiniak			8-20	1,300***		NA	10-31	150*	
Hurst			8-14	6,600***	8-14	1,200***		NC	
Kalsin			8-13	400***	8-13	300***	10-24	60*	
Marshy			8-20	0***		NA		NC	
Monashka			8-7	2,500***		NA	10-14	15*	
Myrtlė			8-20	3,200***		NA		NC	
01ds			8-13	36,000***		200***	10-24	350*	
Pasagshak	8-20	1,000***		NC		NA	10-26	3,500*	
Pillar			9-4	4,500***		NA	10-14	20*	
Red Cloud			9-4	2,650***		NC		NA	
Roslyn			8-20	5,600***		NA	10-9	160*	
Russian			9-4	6,000***	9-4	6,000***	10-29	50 *	
Salonie			8-20	11,250***	8-20	3,750***	10-29	350 *	
Salt			8-20	20***		NA	10-24	15*	
Saltery		NC	8-20	46,000***		NC		NC	
Sargent			8-20	5,000***		NC	10-29	300*	
Twin			8-20	300 ***		NA		NC	
#410			9-4	12,000 ***		NA		NA	
Total		4,207		193,320		12,150		5,820	

^{*} Foot Survey

NC No Count NA Not Applicable

^{**} Boat Survey

^{***} Aerial Survey (Conducted by Commercial Fish Personnel)

Table 8. Creel Census Estimates From Akalura Creek, Ayakulik River, Karluk River and Olga Creek, 1975.

	Number of	Total	Total	Steel	head	Rainbow	Trout	Dolly	Varden	Co	ho	Chir	ook	Sock	teye
Area	Anglers	Days	Hours	Released	Retained	Released	Retained	Released	Retained		Retained	Released	Retained	Released	
Akalura Cr.	31	31		2	1	62	7	20	4	1	1			3	6
Ayakulik R.	17	94	523	125	11	0	0	121	14	11	3	69	12	75 °	102
Karluk R.															
Lake	45	133	653	1	0	9	21	52	51	0	0	9	o	12	14
Portage*	177	485	1579	48	20	10	10	101	25	0	0	61	165	40	16
Portage**	45	149	1102	1344	42	0	0	755	126	227	14	0	0	0	0
Lagoon	43_	114	991	118	_27_	_ 0_	9	50	0	0	0	75	100		2
Total	310	881	4325	1511	89	19	40	958	202	227	14	145	265	54	32
Olga Cr.:	5	8		0	0	12	6	28	2	21	8			4	0

^{*} Summer, June--August 15, (minimum estimate based on 1972 creel census data)

^{**} Fall, October--November 15.

Table 9. Age and Length Composition of Chinook Salmon Sampled at Karluk Lagoon, June and July, 1975.

		Brood		%	Length (mm)		
	Age	Year	No.	Tota1	Range	Mean	
Male:	2.4 1.4	1968 1969	1 10	2.7 27.0	900 710-900	863	
	2.2	1970	1	2.7	690	770	
	1.3 1.2	1970 1971	6 15	16.2 40.6	670-840 530-830	770 607	
	1.1	1972 1973	3 1	8.1 2.7	360-420 360	393	
			37	100.0			
Female:	2.4	1968	2	10.0	760-910	835	
	1.5 1.4	1968 1969	1 13	5.0 65.0	910 825-1050	883	
	1.3	1970 1971	2 2	10.0	790-840	815	
			20	100.0			
Number and % Total (All Fish							
Sampled)	2.4	1968	5	5.4			
	1.5 1.4	1968 1969	1 32	1.1 34.8			
	2.3	1969	1	1.1			
	2.2	1970	1	1.1			
	1.3 1.2	1970 1971	22 25	23.9 27.2			
	1.1	1972	4	4.3			
	1.0	1973	_1_	1.1			
			92	100.0			

A total of 97 king salmon were sampled; however, five scale samples were unreadable and sex was not determined for 35 fish.

From May 24-August 23, a total of 1,053 chinook salmon were enumerated through Ayakulik weir. Chinook began moving through the weir five days after installation and continued until ten days prior to closure.

Gill Net Catch Analysis:

Figure 6 shows the mean length of trout captured by respective net panel of variable mesh gill nets. The mean length of fish captured increased as mesh sizes became larger. Figure 7 shows distribution of the rainbow trout sample by age class. The catch taken by the 3/4-inch and 1-inch net panels captured ages I and II fish, respectively. However, there was some overlap of age class from the panels indicated, that is, there were some age II with the age I fish in the 3/4-inch mesh panel and some age I with the age II fish in the 1-inch mesh panel.

Bilateral sampling by 3/4 and 1-inch meshes was also observed for Dolly Varden, grayling and coho, however, the small samples described in Table 10 preclude reliable conclusions.

Enhancement and Development of Anadromous Fish:

The gabions installed in Island Lake Creek created a pool facilitating fish passage over the falls and into Island Lake (Figure 8).

Gabions installed in Roadside Creek diverted stream flow to Near Spring (Lake Rose Tead tributaries) creating approximately 12,800 square yards of additional spawning and rearing area (Figure 9).

Mission Lake was experimentally stocked with 3,700 coho (518/1b.) June 27, 1973. On October 1, 1975 coho were observed off the outlet where 23 fish were captured and transferred to the lake. During the flood tide 12 coho negotiated the tide gate into the lake during a 20-minute observation period. Total escapement into the lake was not determined due to icing conditions and poor visibility, however, the plant produced a very active sport fishery as evidenced by 35 anglers (instantaneous count) fishing the Mission Beach area on October 7.

Public Access to Sport Fishing Waters:

Easement recommendations across lands in the Kodiak area (Figure 10) selected by natives under the ANCSA were submitted to the Habitat Protection section for final action by the Bureau of Land Management.

Discussion

Lake and Stream Surveys:

The following recommendations were made to the U.S.F.S. regarding logging operations near streams on Afognak Island (Figure 4): (1) no yarding across streams; (2) trees will not be felled into streams; (3) trees accidentally felled in the stream should be removed within 24 hours; (4) culverts installed so as not to impede fish movement; (5) construct bridges across major streams; (6) equipment will not operate in streams; (7) a fringe of wind firm timber be left along major waters; (8) orient road-stream cross-cross

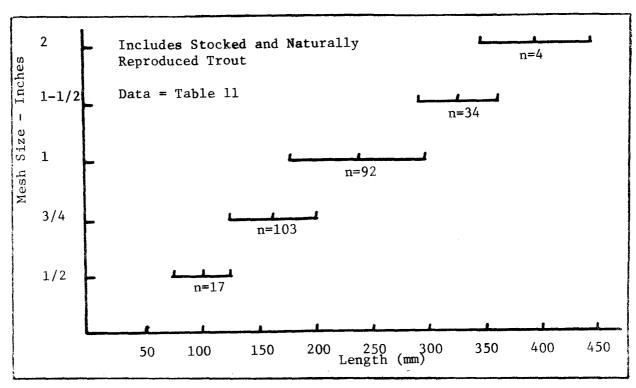
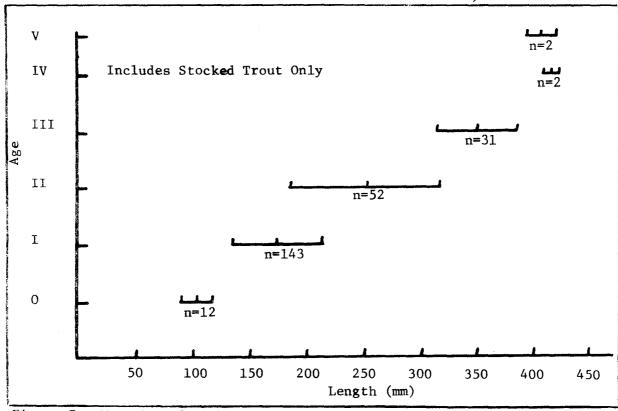
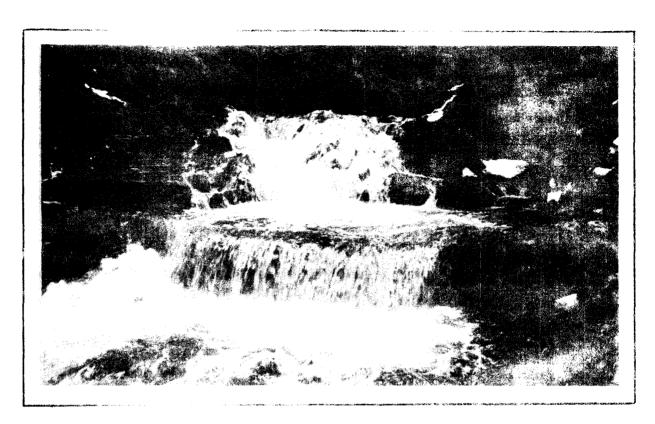


Figure 6. Mean Size and Standard Deviation of Rainbow Trout Caught by Different Mesh Sizes of Variable Mesh Gill Net, Kodiak Island.

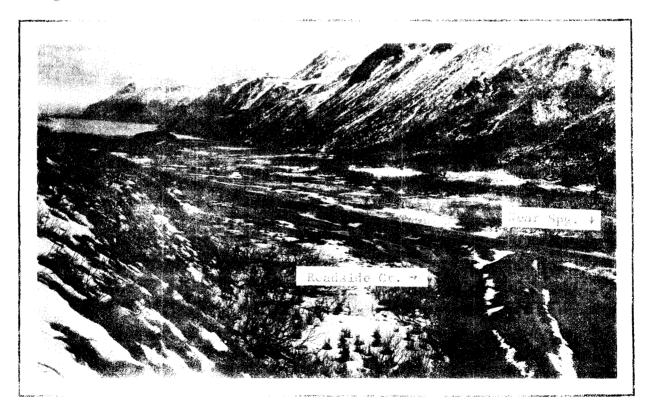

Figure 7. Mean Length and Standard Deviation of Various Rainbow Trout Age Classes Caught by a Variable Mesh Gill Net, Kodiak Island.

Table 10. Fish by Size, Species and Net Panel Captured in Variable Mesh Gill Nets Kodiak Island, 1975.

	1.	/2"		MESH S	IZE	1"	1	-1/2"	2**		
	Ln*	Wt**	Ln*	/ <u>'</u>	Ln*	Wt**			Ln*		
Grayling			* 		•						
n	17	17	6	6	10	10	6	6	3	3	
×	126	20	194	98	249	170	276	281	345	464	
s.d.	2.7	1.6	58.1	90.6	24.4	53.3	35.6	60.6	17.2	48.3	
Rainbow Tr	out										
n	17	17	103	103	92	92	34	34	4	3	
×	102	22	165	71.1	242	208	329	458	396	670	
s.d.	24.4	28.3	38.1	71.5	60.3	180.3	34.1	144.9	47.5	261.9	
Coho Salmo	n										
n	9	• 9	81	81	8	8	3	3	0	0	
x	111	20	176	77	211	201	288	370			
s.d.	28.6	22.5	40.3	108.2	78.4	355.5	91.3	394.7			
Dolly Vard	len										
n	3	3	28	28	36	36	20	20	2	2	
×	105	15	192	75	240	170	311	336	338	456	
s.d.	13.8	4.0	25.1	35.2	58.9	139.2	56.4	177.8	39.6	124.5	

^{*} Ln. is in millimeters ** Wt. is in grams

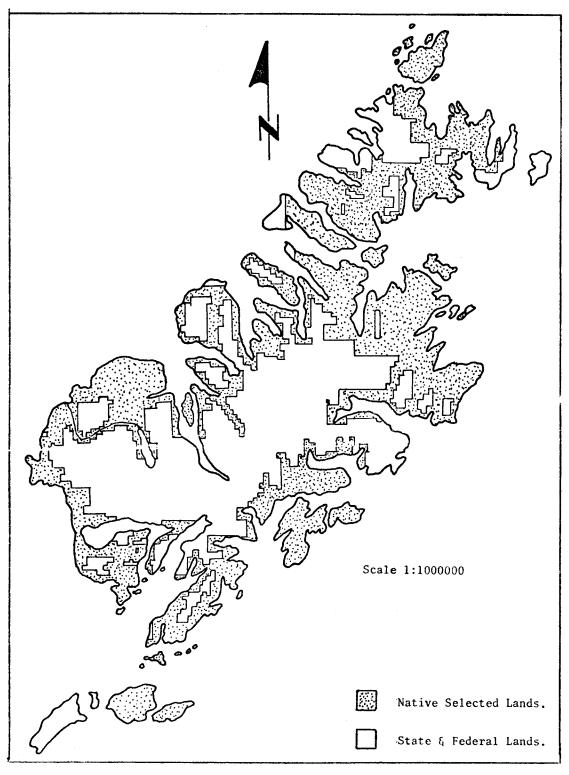


Figure 10. Approximate Area of Native Village Corporations Land Selections in The Kodiak Island Area.

ings at right angles; (9) road crossings be made at headwaters where possible; and (10) utilize natural rock out-croppings for bridge abutments where possible.

Stream surveys of Shuyak Island indicated coho salmon production was distributed throughout the island, and no one watershed was considered to be a major salmon producer. Fishing in most bays is excellent during August and September; however, utilization is low due to the island's remoteness.

Analysis of test netting data (Table 1) suggests growth and survival rates of stocked fishes in most area lakes are adequate to produce viable sport fisheries. Aurel, Cascade, and Tanignak lakes appear to have the best fish populations as several age classes were represented in each sample. In lakes stocked with multiple species, (Abercrombie, Aurel, and Cascade) grayling and rainbow trout appear to compete successfully; however, grayling have a greater growth rate through age I. Both species obtained similar sizes by age II. At age III rainbow are larger than grayling and remain larger through the following age classes.

Landlocked coho production in Mayflower Lake is limited due to stickleback and Dolly Varden competition and a salinity gradient at the 14-foot level which has destroyed approximately one-half the freshwater benthic community (Table 2). The salt water, which has stabilized, must be removed prior to chemical rehabilitation; however, further studies are necessary to determine the feasibility of extracting the saline water.

Poor coho growth and survival in Pony Lake is due to competition with three-spine stickleback. This lake is scheduled for chemical rehabilitation.

Excellent growth rates were observed for age I+ Ennis, Montana rainbow trout in Lupine Lake and Winthrop, Washington trout in Bull Lake. The larger Ennis fry, stocked June 22, 1974 at 150/1b., averaged 271 mm (n=14) in 1975, while Winthrop fry, concurrently stocked at 1,449/1b., average 230 mm (n=19).

Equal numbers of Ennis and Winthrop trout stocked in Margaret Lake at 150 and 1,449 fish per pound June 21, 1974, respectively, averaged 152 mm (n=14) and 148 mm (n=41) in length during 1975 sampling. Similar growth was observed for age I+ Winthrop rainbow trout stocked and sampled concurrently in Lake Genevieve (x=148 mm, n=31). Comparable growth rates for age I fish in the above waters were noted in 1974 (Van Hulle & Murray, 1974) suggesting no appreciable advantage in stocking rehabilitated waters with large fry.

Water chemistry data of seven lakes listed in Table 3 indicate Kodiak waters exhibit low alkalinity and hardness levels and sufficient dissolved oxygen to sustain fish life throughout the year. These conditions are conducive to fish survival, but poor growth as nutrient content of the water is low. Low ice and snow cover, combined with the late fall freezing and mid-spring breakup, reflect the mild winters of Kodiak Island.

Similar water chemistry findings concurrently analyzed by the United States Geological Survey laboratory and a Hach field kit reflect the reliability of the kit and the low productivity of Kodiak area lakes.

The Pasagshak River system supports the largest coho fishery on Kodiak Island. During the 1964 earthquake Lake Rose Tead subsided five feet, causing a reverse river current on 5.5+ foot tides (Lall, Marriot, Simon, Spetz, 1965). The existing salinities appear ideal for coho production as the run has increased tenfold since 1964 (Table 6). For the first time, shoal spawners (n=450) were observed on the southeast shore, suggesting the inlets were at maximum spawning capacity.

The multiple age classes and repeat steelhead-rainbow trout spawners sampled during June, 1975 concur with 1974 fall sampling data (Van Hulle and Murray, 1974) suggesting the Karluk River steelhead run is in excellent condition.

Karluk River salmon escapement counts have been made near the lake outlet since 1945 (Meyer, 1945) where only lake bound fish are enumerated. When the lagoon facility is completely operational, counts of all fish entering the river will be possible. Also, angler effort and harvest for lagoon and float trip fishermen will be determined.

Gillnet Catch Analysis:

Gillnetting is conducted in Kodiak management lakes to determine relative growth and survival rates of age I, II, and III fishes, as they contribute most to the sport fishery. Since it is not necessary or desirable to sample other age classes, a net constructed of 3/4, 1, and 1-1/2 inch mesh would be well suited for sampling stocked lakes in the Kodiak waters.

Enhancement and Development of Anadromous Fish:

The Island Lake Creek enhancement structure should increase anadromous fish escapements into Island Lake as fish are less susceptible to poaching as they can negotiate the falls without injury. During August and September only one coho salmon was observed below the falls while several "jumpers" were observed in the lake, suggesting fish moved past the barrier rapidly.

The diversion structure on Roadside Creek and Near Spring should increase egg survival as prime spawning areas now have continuous water flow. Before the diversion, Roadside Creek and Near Spring were partially dewatered at low flow. This year, a minimum of 1,600 coho utilized the enhanced stream (400 above the deflection) and egg survival is expected to be high. If freshwater and marine survival is adequate, Lake Rose Tead could receive a record coho run in 1978.

LITERATURE CITED

- Lall, D., Marriot, R.S., Simon, R.J., and Spetz, C.E. 1965. Post Earthquake Fisheries Evaluation. Alaska Dept. of Fish and Game. Fed. Aid in Fish Restoration, An Interim Report on the March, 1964 Earthquake Effects on Alaska's Fishery Resources, 1964-1965, Project F-5-R-6, 1(6A): 1-72.
- Meyer, M.W. 1945. Annual Report, United States Department of the Interior, Branch of Alaska Fisheries, Kodiak District, 1945: 1-90.
- Murray, J.B. and Van Hulle, F.D. 1975. Inventory and cataloging of the fish and sport fish waters in southwest Alaska. Alaska Dept. of Fish and Game. Fed. Aid in Fish Restoration, Annual Report of Progress, 1974-1975, Project F-9-7, 16(G-I-B): 1-26.
- . 1974. Inventory and cataloging of the fish and sport fish waters in southwest Alaska. Alaska Dept. of Fish and Game. Fed. Aid in Fish Restoration, Annual Report of Progress, 1973-1974, Project F-9-6, 15(G-I-B): 1-21.
- Van Hulle, F.D. 1971. Inventory and cataloging of the fish and sport fish waters in southwest Alaska. Alaska Dept. of Fish and Game. Fed. Aid in Fish Restoration, Annual Report of Progress, 1970-1971, Project F-9-3, 12 (G-I-B): 29-51.
- . 1970. Inventory and cataloging of the fish and sport fish waters in southwest Alaska. Alaska Dept. of Fish and Game. Fed. Aid in Fish Restoration, Annual Report of Progress, 1969-1970, Project F-9-2, 11 (G-I-B): 47-63.

Prepared by:

Approved by:

Frank Van Hulle Fishery Biologist s/Wm. Michael Kaill, Chief
Sport Fish Research

John B. Murray Fishery Biologist s/Rupert E. Andrews, Director
Sport Fish Division